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HOW TO GENERATE A BARYON 
ASYMMETRY?

Sakharovs conditions (1967):

‣Baryon number violation

‣CP violation
‣Departure from equilibrium

SM:







(B+L)!
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SEE-SAW MODEL OF NEUTRINO MASSES

‣Right-handed neutrinos    are neutral singlets
‣Can have Majorana mass term:

‣Mass matrix:

‣Eigenvalues: 

ψNi

�
0 Yiv

Y ∗
i v Mi

�

Minkowski 1977,  Yanagida 1979, ...

L =
1
2
ψ̄Ni(i∂/−Mi)ψNi + ψ̄�i∂/ψ� − Y ∗

i ψ̄�φ
†PRψNi − Yiψ̄NiPLφψ�

λ− ≈ |Y 2| v
2

M1

λ+ ≈ M1
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SEE-SAW MODEL OF NEUTRINO MASSES

‣Right-handed neutrinos    are neutral singlets
‣Can have Majorana mass term:

‣Majorana mass violates lepton number

‣Out of equilibrium decay of    if couplings 
satisfy 

ψNi

Minkowski 1977,  Yanagida 1979, ...

L =
1
2
ψ̄Ni(i∂/−Mi)ψNi + ψ̄�i∂/ψ� − Y ∗

i ψ̄�φ
†PRψNi − Yiψ̄NiPLφψ�

new CP violation

N1

ΓN1 ∝
�

|Y1i|2M1 < H
��
T≈M1
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HOW TO GENERATE AN ASYMMETRY?

Sakharovs conditions:

‣Baryon number violation

‣CP violation
‣Departure from equilibrium

SM + See Saw





Leptogenesis Fukugita & Yanagida, 1986
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USUAL WAY TO PREDICT ASYMMETRY:

‣Calculate CP asymmetry in decays

‣Plug into Boltzmann equation

‣Solve (with approximations)

N1
!

h

Nj
!

h

N1 N1 h

!

∂ηf�−�̄ = CD[f�−�̄] + CS [f�−�̄]

×
� �∗

e.g. Pedestrian: Buchmuller, di Bari, Plumacher, 2000
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Figure 3: Comparison analytical (dashed lines) and numerical (solid lines) results for

heavy neutrino production and B − L asymmetry in the case of zero initial abundance,

N i
N1

= 0, for weak washout (top) and strong washout (bottom); |ε1| = 10−6.
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VALID APPROACH?

‣Calculate CP asymmetry in decays

‣Plug into Boltzmann equation

‣Solve (with approximations)

N1
!

h

Nj
!

h

N1 N1 h

!

∂ηf�−�̄ = CD[f�−�̄] + CS [f�−�̄]

×
� �∗

e.g. Pedestrian: Buchmuller, di Bari, Plumacher, 2000
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Figure 3: Comparison analytical (dashed lines) and numerical (solid lines) results for

heavy neutrino production and B − L asymmetry in the case of zero initial abundance,

N i
N1

= 0, for weak washout (top) and strong washout (bottom); |ε1| = 10−6.
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Quantum Effect

Classical Equation

something missed?
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‣Canonical Framework: Nonequilibrium QFT
‣Applied to Leptogenesis
 

‣Related

ONGOING EFFORT TO IMPROVE:

Buchmuller, Fredenhagen, 2000; 
de Simone, Riotto, 2007; 
Garny, Hohenegger, Karavtsev, Lindner, 2009, 2009; 
Anisimov, Buchmuller, Drewes, Mendizabal, 2010, 2010;
Garny, Hohenegger, Karavtsev, 2010;
Beneke, Garbrecht, Herranen, PS, 2010;
Beneke, Fidler, Garbrecht, Herranen, PS 2010;
Garbrecht, 2010;
Beneke, Garbrecht, PS,... in progress

Drewes, 2010; 
Gagnon, Shaposhnikov, 2010;
Anisimov, Besak, Bodeker, 2010; 
Herranen et al, 2011; 
Fidler et al, 2011; 
Garbrecht, Garny, 2011;
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‣Canonical Framework: Nonequilibrium QFT
‣Applied to Leptogenesis
 

‣Related

ONGOING EFFORT TO IMPROVE

Buchmuller, Fredenhagen, 2000; 
de Simone, Riotto, 2007; 
Garny, Hohenegger, Karavtsev, Lindner, 2009, 2009; 
Anisimov, Buchmuller, Drewes, Mendizabal, 2010, 2010;
Garny, Hohenegger, Karavtsev, 2010;
Beneke, Garbrecht, Herranen, PS, 2010;
Beneke, Fidler, Garbrecht, Herranen, PS 2010;
Garbrecht, 2010;
Beneke, Garbrecht, PS,... in progress

Drewes, 2010; 
Gagnon, Shaposhnikov, 2010;
Anisimov, Besak, Bodeker, 2010; 
Herranen et al, 2011; 
Fidler et al, 2011; 
Garbrecht, Garny, 2011;

This tal
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‣Dyson-Schwinger eqn. on CTP                
NEQFT FOR LEPTOGENESIS

i∂/uSab(u, v) = aδabδ
4(u− v) +

�

c

�
d4wΣac(u, w)Scb(w, v)

22 T. Gasenzer

Fig. 9. (Color online) Schwinger-Keldysh closed time path C. The green dots indicate the times x0

and y0 for an example two-point function G(x, y), see text. The branches are drawn above and below
the time axis only in order to make them separately visible.

This forms the central result that the 2PI effective action is given, besides the terms (64), by
a series of all closed 2PI diagrams which can be formed from the full propagator G, the bare
vertices defined by the classical action, and at most two external field insertions φ.

The expansion of the 2PI part Γ2[φ, G] up to 3-loop order, for the classical action defined
in Eq. (55) is shown in Fig. 8. We emphasise that, although the diagrams in this expansion are
proportional to a power of the bare coupling g, truncations of the series can not be regarded as
perturbative in g since the propagator G itself represents an expansion to infinite order in the
coupling. The reason is that the stationarity condition for G, Eq. (63) yields a perturbatively
truncated expression for the inverse of G.

In order to arrive at a set of dynamic equations we need to discuss in more detail the
implementation of the initial value problems we have in mind.

3.3 Schwinger-Keldysh closed time path

We assume that the many-body state is initially, i.e., at time t = t0, given by some general
(mixed) density matrix ρ(t0) The time evolution of the expectation value of an operator O is
then given as

〈t|O|t〉 = Tr
[
ρ(t0)U

†(t, t0)OU(t, t0)
]
, (67)

where U(t, t′) = T exp{−i
∫ t
t′ dt′′ H(t′′)/h̄} denotes the time evolution operator as obtained

from the Hamiltonian H(t).
The operators O relevant for us, i.e., the n-point correlation functions, are products involv-

ing, in the Heisenberg picture, operators evaluated at different times. In the Schrödinger picture
this implies additional time evolution operators between these factors. Consider, for instance,
the two-time Green function,

〈TCΦa(x)Φb(y)〉c = Tr
[
ρ(t0)TC U †(x0)Φa(x)U(x0)U †(y0)Φb(y)U(y0)

]
− disc., (68)

where U(t) ≡ U(t, t0) and the operators are time-ordered in a way which leaves the ordering
within the products U †ΦU invariant. The disconnected part is denoted as ‘disc.’. The product
of different time evolution operators and field operators can be visualised by means of the closed
time path as shown in Fig. 9. Starting at time t0, path sections leading to the maximum time
appearing in the arguments of the field operators indicate time evolutions U . One generically
chooses all times to lie on the + branch. However, different time orderings can be handled
simultaneously by allowing times on the − branch as well and thereby doubling the range
of possible times. Clearly, the two-point Green functions, with times evaluated on either or
both of the two branches, are not completely independent from each other, and one aim of the
discussion in later sections will be to clarify the dependencies. Here we only point out that the
formalism to be developed naturally allows for two-time Green functions G(x, y) and therefore
for Fourier transforms over their relative time x0−y0. These transforms, in turn, are functions of
the frequency which, e.g., for a translationally invariant system, contain information about the
spectral distribution of a particular momentum mode p. Beyond the mean-field approximation,
collisions imply the redistribution of momentum between the particles. These scattering effects
emerge naturally as finite widths in the spectral distribution around the dispersion peak at
ω(p). How these properties emerge from the dynamical theory to be developed is the topic of
Section 4.

iS(u, v) = �ψ(u)ψ̄(v)�
1PI self energies

lepton two point function

lepton + antilepton densities∝ f�(t, k)
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Ni

Nj

NEQFT FOR LEPTOGENESIS

‣Dyson-Schwinger eqn. on CTP                
i∂/uSab(u, v) = aδabδ

4(u− v) +
�

c

�
d4wΣac(u, w)Scb(w, v)

22 T. Gasenzer

Fig. 9. (Color online) Schwinger-Keldysh closed time path C. The green dots indicate the times x0

and y0 for an example two-point function G(x, y), see text. The branches are drawn above and below
the time axis only in order to make them separately visible.

This forms the central result that the 2PI effective action is given, besides the terms (64), by
a series of all closed 2PI diagrams which can be formed from the full propagator G, the bare
vertices defined by the classical action, and at most two external field insertions φ.

The expansion of the 2PI part Γ2[φ, G] up to 3-loop order, for the classical action defined
in Eq. (55) is shown in Fig. 8. We emphasise that, although the diagrams in this expansion are
proportional to a power of the bare coupling g, truncations of the series can not be regarded as
perturbative in g since the propagator G itself represents an expansion to infinite order in the
coupling. The reason is that the stationarity condition for G, Eq. (63) yields a perturbatively
truncated expression for the inverse of G.

In order to arrive at a set of dynamic equations we need to discuss in more detail the
implementation of the initial value problems we have in mind.

3.3 Schwinger-Keldysh closed time path

We assume that the many-body state is initially, i.e., at time t = t0, given by some general
(mixed) density matrix ρ(t0) The time evolution of the expectation value of an operator O is
then given as

〈t|O|t〉 = Tr
[
ρ(t0)U

†(t, t0)OU(t, t0)
]
, (67)

where U(t, t′) = T exp{−i
∫ t
t′ dt′′ H(t′′)/h̄} denotes the time evolution operator as obtained

from the Hamiltonian H(t).
The operators O relevant for us, i.e., the n-point correlation functions, are products involv-

ing, in the Heisenberg picture, operators evaluated at different times. In the Schrödinger picture
this implies additional time evolution operators between these factors. Consider, for instance,
the two-time Green function,

〈TCΦa(x)Φb(y)〉c = Tr
[
ρ(t0)TC U †(x0)Φa(x)U(x0)U †(y0)Φb(y)U(y0)

]
− disc., (68)

where U(t) ≡ U(t, t0) and the operators are time-ordered in a way which leaves the ordering
within the products U †ΦU invariant. The disconnected part is denoted as ‘disc.’. The product
of different time evolution operators and field operators can be visualised by means of the closed
time path as shown in Fig. 9. Starting at time t0, path sections leading to the maximum time
appearing in the arguments of the field operators indicate time evolutions U . One generically
chooses all times to lie on the + branch. However, different time orderings can be handled
simultaneously by allowing times on the − branch as well and thereby doubling the range
of possible times. Clearly, the two-point Green functions, with times evaluated on either or
both of the two branches, are not completely independent from each other, and one aim of the
discussion in later sections will be to clarify the dependencies. Here we only point out that the
formalism to be developed naturally allows for two-time Green functions G(x, y) and therefore
for Fourier transforms over their relative time x0−y0. These transforms, in turn, are functions of
the frequency which, e.g., for a translationally invariant system, contain information about the
spectral distribution of a particular momentum mode p. Beyond the mean-field approximation,
collisions imply the redistribution of momentum between the particles. These scattering effects
emerge naturally as finite widths in the spectral distribution around the dispersion peak at
ω(p). How these properties emerge from the dynamical theory to be developed is the topic of
Section 4.

iS(u, v) = �ψ(u)ψ̄(v)�
1PI self energies

lepton two point function

lepton + antilepton densities∝ f�(t, k)

∂η(n� − n�̄) = W + S

n�(t) =
�

d3kf�(t, k)
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FINITE NUMBER DENSITY CORRECTIONS

‣Source term in hierarchical limit (              ):

S = 3 Im[Y 2
1 Y ∗

2
2]

�
−M1

M2

� �
d3k�

(2π)32 ωk�
δfN (k�) ΣNµ(k�)Σµ

N (k�)

M2 �M1

fN − feq
N

no asymmetry in 
equilibrium

Σµ
N (k) =

�

p,q
δ4(k − p− q) pµ

�
1− f eq

� (p) + f eq
φ (q)

�

finite density corrections

In vacuum QFT: Σµ
N (k) =

kµ

16π
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THERMAL EFFECTS: STRONG WASHOUT

0.1 1 10

10!11

10!10

10!9

10!8

z"M1!T

"Y l"

blue: thermal initial       density
red: zero initial       density

N1

N1
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THERMAL EFFECTS: WEAK WASHOUT

blue: thermal initial       density
red: zero initial       density

N1

N1

0.1 1 10

10!11

10!10

10!9

10!8

z"M1!T

"Y l"

can be sizab
le!
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LEPTON FLAVORS

‣Neutral and charged Lepton Yukawa couplings   
in general not aligned

‣Leptogenesis usually dominated by    decays

‣Decay into linear combination of  

L = Yiaψ̄Niφψ�a + habψ̄Raφ
†τψ�b + h.c.

N1

e, µ, τ

N1 → φ� , � ∼ αe�e + αµ�µ + ατ �τ

Barbieri et al, 2000; Endoh et al, 2004;
Abada et al, 2006; Nardi et al, 2006;
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MODIFICATION OF WASHOUT RATES

‣Assume tau Yukawa in thermal equilibrium

‣   Projected onto states   and    by flavor 
sensitive interactions (denote as    )

‣Boltzmann E:

‣Small washout in one flavor can largely 
increase the asymmetry (over 100%)

� �τ �⊥

d

dη
∆n�i = Wi + S�

�1,2
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FLAVORED EVOLUTION EQUATIONS

‣No oscillation term: suppressed by fast flavor-
insensitive gauge interactions

‣Decoherence only through flavor sensitive 
scatterings

∂q�

∂η
= − [Ξ, q�]− {W, q�} + 2S − Γfl

�

H
!

eR

Beneke, Fidler, Garbrecht, Herranen, PS, 2010
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‣Total asymmetry 
as function of the 
Leptogenesis scale

‣Unflavored: 

‣Fully Flavored:

Scenario B

1010 1011 1012 1013 1014
0

2.!10"9
4.!10"9
6.!10"9
8.!10"9
1.!10"8
1.2!10"8

M1!GeV"
#Y 11#

Y 2
2#

IMPORTANCE OF FLAVOR

blue: full solution
red: unflavored 
green: fully flavored 

M1 > 1013

M1 < 1011
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YUKAWA INTERACTION RATES

‣Responsible for
‣N1 production/decay -> strength of washout
‣ Flavor sensitive scatterings -> scale where different flavor 
regimes are valid

‣Difficulty
‣massless 1->2 processes zero at tree level 

‣massive 1->2 affected by thermal masses 

‣properly include all contributions at 

O(g2T )

O(g2T )

O(g2T )
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LEADING CONTRIBUTIONS

‣Thermal masses/width

‣Off-shell 2   2 scatterings

‣Collinearly enhanced 
2   3 processes

!

R

H

H
!

R

t

t̄

H !

R

Arnold, Moore, Yaffe, 2000;
Anisimov, Besak, Bodeker, 2010;

thermal masses:
Giudice, Notari, Raidal, Riotto, Strumia, 2003;
Kiessig, Plumacher, Thoma, 2009;
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APPROACH

‣Use 2PI vacuum diagrams to obtain 1PI self 
energies

‣resums bubble subgraphs (not 2PI) into 
propagators

‣avoids divergencies in t channel diagrams

‣2->3 following AMY, ABB
‣ currently checking results, numerics. Soon!
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CONCLUSIONS

‣Ongoing effort to understand Leptogenesis at 
the quantum level

‣Consistent framework to derive evolution 
equations for lepton asymmetry

‣Solid formalism for calculating interaction rates

‣Dynamics of important early universe process 
from first principles
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BACKUP!
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SUPPRESSION OF OSCILLATIONS

‣Flavor blind interactions                     (          )

‣Oscillations                            (            )

‣Toy
Model:

‣Last term enforces

‣Oscillations suppressed by large 

Γbl ∼ g4
2 T kinetic 

equilibrium

∆ω ∼ h2
τ T << Γbl from thermal

masses

Γbl

d(δ+)/dt = −iω δ+ − Γbl[δ+ + δ−]

d(δ−)/dt = +iω δ− − Γbl[δ+ + δ−]

δ+ = −δ− +O(ω/Γbl)δ−



Pedro Schwaller Flavor and Scattering Effects in Leptogenesis SUSY 2011

DEPENDENCE ON LEPTOGENESIS SCALE

‣Expansion of Universe:

‣Charged Higgs Yukawa interactions: 

‣Tau Yukawa in equilibrium below 

‣If Leptogenesis takes place at or below this 
scale, flavor is important

H = 1.66
√

g�
T

2

Mpl

Γfl ∝ h2
τT

1012 GeV
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FULLY FLAVORED REGIME

‣Two flavor regime             
and three flavor regime

‣Work in charged lepton mass basis, calculate 
separate washout and source terms for each 
flavor

‣Flavor oscillations?

Abada et al,  2006
Nardi et al, 2006

T < 1012 GeV

T < 109 GeV

d

dη
∆n�i = Wi + Si + . . .
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INTERMEDIATE REGIME

‣Washout,
expansion, 
flavor 
decoherence 
with similar 
strength 

‣Separate treatment of flavors not sufficient

‣ideally: find basis invariant formalism

h
Τ" 0.001

h
Τ" 0.002

h
Τ" 0.004

h
Τ" 0.007

h
Τ" 0.030

0.2 0.5 1.0 2.0 5.0 10.0 20.010#9

10#8

10#7

10#6

10#5

z

R
!M

1

(A)

h
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h
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h
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h
Τ" 0.007

h
Τ" 0.030

0.2 0.5 1.0 2.0 5.0 10.0 20.010#9

10#8

10#7

10#6

10#5

z

R
!M

1

(B)

Figure 1: Comparison of the relevant rates R = Γa
ID, H, h2

τ (Γ
an +Γsc) for Scenarios (A)

and (B). The colour key is H (solid, black), Γ1
ID (dashed, dark blue), Γ2

ID (dashed, light
blue), h2

τ (Γ
an + Γsc) with hτ = 3 × 10−2, 7 × 10−3, 4 × 10−3, 2 × 10−3, 10−3 (from top

right to bottom left, dotted, red).

To obtain numerical solutions, we first solve the kinetic equations for the distribution
of the right-handed neutrinos N1. They are given in Ref. [9], and the generalisation from
the single flavour to the two-flavour case follows by the straightforward replacement
|Y1|2 →

∑

a |Y1a|2. We employ this distribution to calculate the washout and the source
terms within Eq. (2). To be specific, we choose thermal initial conditions for N1. For the
singlet neutrino masses, we choose M1 = 1012GeV and M2 = 1014GeV. For the Yukawa
couplings of the right handed neutrinos, we consider two scenarios

Y =

(

1.4× 10−2 1× 10−2

i× 10−1 10−1

)

, Scenario (A) , (91)

Y =

(

1.4× 10−2 3× 10−3

i× 10−1 10−1

)

, Scenario (B) .

We vary the Yukawa coupling hτ , since this will directly exhibit the dependence of the
results on the flavour effects, while of course, for a phenomenological study, it would be
more pertinent to vary the unknown parameters Y and M1,2.

In Figure 1 we show the interaction rates Γfl = h2
τ (Γ

an + Γsc) for different values
of hτ and compare them to the expansion rate of the universe H and to the inverse
decay rate for the individual flavours a, Γa

ID = 2Waa as a function of the ratio of M1

to the physical temperature, z = a(η)M1/T . Scenario (A) exhibits moderate to strong
washout in both flavours, where the dominant contributions to the lepton asymmetry
are generated between z ≈ 3 and the point when the lepton asymmetry freezes out,
ΓID ≈ H . We expect flavour effects to be negligible when Γfl <

∼ H ≈ Γa
ID during these

times before freeze out [26], i.e. for hτ significantly smaller than 4× 10−3 by inspection
of Figure 1. On the other hand a fully flavoured description should be applicable when

24



Pedro Schwaller Flavor and Scattering Effects in Leptogenesis SUSY 2011

OUR APPROACH

‣Derive evolution equations for number densities 
directly from Nonequilibrium Quantum Field Theory

‣Natural basis for treatment of flavor

‣Obtain finite temperature/density corrections to 
CP asymmetries

‣Automatic implementation of real intermediate 
state subtraction (no double counting)

Beneke, Garbrecht, Herranen, PS, 2010
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NONEQUILIBRIUM QFT

‣Conventional QFT: Calculate “in - out” 
correlators (S-matrix elements)

‣NEQFT: Know the “in” state     , want to 
predict the time evolution of operator: 

�t|O|t� = Tr[ρ(t0)U†(t, t0)OU(t, t0)]

ρ(t0)

in�A|B�out = �A|U(−t, t)|B�t→∞ = �A|S|B�
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CTP FORMALISM

‣Instead of “in-out” correlators: Calculate “in-in” 
expectation values

‣Possible using conventional QFT methods if we let 
time coordinate on Closed Time Path

‣Fields get additional index            that indicates the 
position of the time coordinate

22 T. Gasenzer

Fig. 9. (Color online) Schwinger-Keldysh closed time path C. The green dots indicate the times x0

and y0 for an example two-point function G(x, y), see text. The branches are drawn above and below
the time axis only in order to make them separately visible.

This forms the central result that the 2PI effective action is given, besides the terms (64), by
a series of all closed 2PI diagrams which can be formed from the full propagator G, the bare
vertices defined by the classical action, and at most two external field insertions φ.

The expansion of the 2PI part Γ2[φ, G] up to 3-loop order, for the classical action defined
in Eq. (55) is shown in Fig. 8. We emphasise that, although the diagrams in this expansion are
proportional to a power of the bare coupling g, truncations of the series can not be regarded as
perturbative in g since the propagator G itself represents an expansion to infinite order in the
coupling. The reason is that the stationarity condition for G, Eq. (63) yields a perturbatively
truncated expression for the inverse of G.

In order to arrive at a set of dynamic equations we need to discuss in more detail the
implementation of the initial value problems we have in mind.

3.3 Schwinger-Keldysh closed time path

We assume that the many-body state is initially, i.e., at time t = t0, given by some general
(mixed) density matrix ρ(t0) The time evolution of the expectation value of an operator O is
then given as

〈t|O|t〉 = Tr
[
ρ(t0)U

†(t, t0)OU(t, t0)
]
, (67)

where U(t, t′) = T exp{−i
∫ t
t′ dt′′ H(t′′)/h̄} denotes the time evolution operator as obtained

from the Hamiltonian H(t).
The operators O relevant for us, i.e., the n-point correlation functions, are products involv-

ing, in the Heisenberg picture, operators evaluated at different times. In the Schrödinger picture
this implies additional time evolution operators between these factors. Consider, for instance,
the two-time Green function,

〈TCΦa(x)Φb(y)〉c = Tr
[
ρ(t0)TC U †(x0)Φa(x)U(x0)U †(y0)Φb(y)U(y0)

]
− disc., (68)

where U(t) ≡ U(t, t0) and the operators are time-ordered in a way which leaves the ordering
within the products U †ΦU invariant. The disconnected part is denoted as ‘disc.’. The product
of different time evolution operators and field operators can be visualised by means of the closed
time path as shown in Fig. 9. Starting at time t0, path sections leading to the maximum time
appearing in the arguments of the field operators indicate time evolutions U . One generically
chooses all times to lie on the + branch. However, different time orderings can be handled
simultaneously by allowing times on the − branch as well and thereby doubling the range
of possible times. Clearly, the two-point Green functions, with times evaluated on either or
both of the two branches, are not completely independent from each other, and one aim of the
discussion in later sections will be to clarify the dependencies. Here we only point out that the
formalism to be developed naturally allows for two-time Green functions G(x, y) and therefore
for Fourier transforms over their relative time x0−y0. These transforms, in turn, are functions of
the frequency which, e.g., for a translationally invariant system, contain information about the
spectral distribution of a particular momentum mode p. Beyond the mean-field approximation,
collisions imply the redistribution of momentum between the particles. These scattering effects
emerge naturally as finite widths in the spectral distribution around the dispersion peak at
ω(p). How these properties emerge from the dynamical theory to be developed is the topic of
Section 4.

φa(t, x)

a = ±

Schwinger, 1961; Keldysh, 1964, ...
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CTP FORMALISM

‣Relevant information contained in 2-point functions 
for bosons           and fermions   

‣become 2x2 matrices   

‣Time evolution from Dyson-Schwinger equation:

S(u, v)∆(u, v)

i∂/uSab(u, v) = aδabδ
4(u− v) +

�

c

�
d4wΣac(u, w)Scb(w, v)

1PI self energy

�
G++ G+−

G−+ G−−

�
=

�
GT G<

G> GT̄

�
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QUANTUM BOLTZMANN EQUATIONS

‣Gradient & loop expansion, quasiparticle 
approximation (also, a Wigner transformation in between)

‣Obtain evolution equations for number densities

‣Conformal time   to incorporate expansion of the 
universe, proportional to inverse temperature

d

dη
fN1(k) = D(k)

d

dη
(n� − n̄�) = W + S .

η
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NOW WITH FLAVOR

‣just “add” flavor indices to field operators

‣Straightforward generalization for washout and 
source terms

‣In addition: oscillations, flavor sensitive scatterings

iS<
� (u, v) = �ψ̄�(v)ψ�(u)�

iS<
�ab(u, v) = �ψ̄�b(v)ψ�a(u)�

Beneke, Fidler, Garbrecht, Herranen, PS 2010
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FLAVOR OSCILLATIONS

‣Commutator term in kinetic equation: 

‣Time dependent mass basis, diagonalize self energy 
using 

‣additional term                 with
 

i∂ηS<,>

� −
�
k · γ + Σ/H

� , S<,>

�

�
= −1

2

�
C� + C†

�

�

ΣH

D
= U†(η)ΣHU(η)

i
�
Ξ, S<,>

�

�
Ξ = U†∂ηU

∂ηδn
±
�ab −

�
Ξ, δn±

�

�
ab

±i∆ωabδn
±
�ab = ±1

2

�
C� + C†

�

�

ab
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FLAVOR SENSITIVE INTERACTIONS

‣Main source of flavor decoherence

‣Contributions from annihilation/scatterings

‣all processes allowed at finite temperature

‣estimate using

H
!

eR

Γan + Γsc ≈ 0.7 αw T
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FLAVORED EVOLUTION EQUATION

‣Gauge interactions enforce kinetic equilibrium also for 
off diagonal densities

‣Introduce flavored number densities       , define 
flavored charge density  

‣Evolution equation:

n±�ab

q�ab = n+
�ab − n−�ab

∂q�

∂η
= − [Ξ, q�]− {W, q�} + 2S − Γfl

�



NUMERICS (CHARGED LEPTON FLAVOR BASIS)
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WHEN ARE FLAVOR EFFECTS IMPORTANT?

‣Three regimes (neglecting muon, electron Yukawas and 

assuming that flavors are not aligned)

‣Unflavored: Single flavor approximation is good

‣Fully Flavored: Off-diagonal densities can be neglected

‣Intermediate: Full evolution equation needs to be 
solved
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BARYON NUMBER VIOLATION

‣Early universe has zero baryon number, but 
todays universe has a nonzero 

‣Lepton number    violated by Majorana mass 
term

‣Electroweak sphalerons can convert the lepton 
asymmetry into a baryon asymmetry

      Generating a lepton asymmetry sufficient

L

B
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CP VIOLATION

‣Must be able to distinguish particles from anti-
particles

‣In Leptogenesis: CP violated in decays of heavy 
right-handed neutrinos:

L

LN1

AH

H

AH

N1 L

H

HA

N1 L

H

HN1

AL

L

AL

N1 H

L

LA

N1 H

H

N1 U3

Q3L

H

L

U3

N1

Q3

H

L

Q3

N1

U3

N1, 2, 3

LL

HH

N1, 2, 3

H

H L

L

N1, 2, 3

H

HL

L

N1

L

H

N1
N2, 3

L

L

H

H

N1 N2, 3

LL

HH

Figure 4: Feynman diagrams contributing to SM thermal leptogenesis.

papers, and plot γD, γHs, γHt, γAs, γAt normalized in units of HnN1
and the ‘subtracted

∆L = 2 scattering rate’ (see appendix A) γsub
N normalized in units of Hnγ.

Decays

The modification in γD is probably the most apparent feature of a comparison between
fig. 5b and 5c, and it occurs because at sufficiently high temperature, the Higgs be-
comes heavier than N1 and the decay N1 → HL becomes kinematically forbidden. For
temperatures in the range where mH − mL < mN1

< mH + mL, there are no two-body
decays involving N1 at all. At higher temperatures the Higgs becomes heavy enough for

10
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CP VIOLATION II

‣QM: Observables are expectation values of 
operators

‣Asymmetry: 

‣Simplest case: 

No asymmetry since Γ̄ = Γ

Γ(N1 → H�+) = |�N1|Hint|H�+�|2 = |A|
2

A = h1A0

Ā = h∗
1A0

YL =
Γ− Γ̄

Γ+ Γ̄
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CP VIOLATION III

‣Add one loop correction

‣Asymmetry proportional to interference term

‣Note: Requires complex couplings and complex 

A = h1A0 + h∗
1(h2)

2A1

Ā = h∗
1A0 + h1(h

∗
2)

2A1

YL ∝ �(h1h1h
∗
2h

∗
2)�(A0A1)

A1
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IN LEPTOGENESIS

‣In early universe: Expansion with Hubble rate 

‣Processes with rates      go out of EQ
‣Distributions      deviate from 

Γ � H

f(k, t)

H = 1.66
√

g�
T

2

Mpl

feq(k) =
1

eβE(k) ∓ 1
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CONFORMAL TIME STUFF

‣Temperature:

‣Expansion rate (radiation dominated): 

‣“time variable” 

‣Time derivative becomes

100 Finite Number Density Corrections to Leptogenesis

earlier in this Section and in Sections 5.4 and 5.5 below remain valid in the
expanding Universe if momenta k are understood as comoving momenta kcom,
temperature T (and β = 1/T ) as comoving temperature Tcom (and βcom), time t
as conformal time η, f(kcom) and n as comoving phase-space distributions and
particle number densities, respectively, and if finally masses Mi are replaced by
aMi, wherever they appear.

For the scale factor in the radiation-dominated Universe we use the relation

a(η) = aRη . (5.26)

Using the Friedmann equation and the free energy, we can relate this to the
temperature as

T =
Tcom

a(η)
=

1

a(η)

√
aRmPl

2

(
45

g∗π3

)1/4

, (5.27)

where g∗ denotes the number of relativistic degrees of freedom and mPl = 1/
√

GN =
1.22 · 1019 GeV the Planck mass. The variable z = M1/T that will be used in
Section 5.6 is therefore related to η by a constant proportionality factor.

Kinetic equations are often formulated in terms of physical momenta and
physical time. In order to make contact, we can replace in our equations the
comoving momenta by physical momenta kph = kcom/a and the comoving tem-
perature by the physical temperature Tph = Tcom/a. Doing so and dividing by a
factor of a for convenience, the right-hand sides (i.e. the collision terms), simply
take the same form as given earlier in this Section, where now all momenta are
to be understood as physical. The left-hand sides change according to

1

a(η)

d

dη
f(kcom) =

∂

∂t
f(kph) +

(
∂

∂|kph|
f(kph)

)
∂|kph|

∂t
(5.28)

=
∂

∂t
f(kph) − H|kph|

∂

∂|kph|
f(kph) ,

where f may stand for fN or f! − f̄!. This formula applies to the treatment
of the densities of right-handed neutrinos, that do not necessarily maintain ki-
netic equilibrium during leptogenesis, implying that one cannot substitute for
fNi a Fermi-Dirac distribution with a (pseudo-)chemical potential. For the lep-
ton charge, it is suitable to consider the integrated version

1

a(η)

∫
d3kph

(2π)3

d

dη
f(kcom) =

∂

∂t
nph + 3Hnph (5.29)

of the above equation. This is just the familiar cosmological dilution law, where
nph denotes a physical number density and H the Hubble parameter with respect
to time t. However, in Section 5.6 we will solve the kinetic equations directly in
conformal coordinates.

z = M1/T ∝ η

a(η) = aRη

d

dη
= aR

d

dz
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THE ELECTROWEAK SPHALERON

‣         current is anomalous in the SM

‣At         : Tunneling between configurations 
with different          highly suppressed

‣At             : In equilibrium
‣have                     : 
no proton decay

∆B = ∆L = 3

B + L

T = 0

B + L

T � TeV

inflationary period as a coherent effect of scalar fields which leads to an asymmetry
between quarks and antiquarks after reheating [8]. For the classical GUT baryogenesis
and for leptogenesis the departure from thermal equilibrium is due to the deviation
of the number density of the decaying heavy particles from the equilibrium number
density. How strong this deviation from thermal equilibrium is depends on the lifetime
of the decaying heavy particles and the cosmological evolution. Further scenarios for
baryogenesis are described in [9].

The theory of baryogenesis involves non-perturbative aspects of quantum field
theory and also non-equilibrium statistical field theory, in particular the theory of
phase transitions and kinetic theory. A crucial ingredient is the connection between

Sphaleron bL

bL

tL
sL

sL

cL

dL

dL

uL
νe

νµ

ντ

Figure 1: One of the 12-fermion processes which are in thermal equilibrium in the
high-temperature phase of the standard model.

baryon number and lepton number in the high-temperature, symmetric phase of the
standard model. Due to the chiral nature of the weak interactions B and L are not
conserved. At zero temperature this has no observable effect due to the smallness of
the weak coupling. However, as the temperature approaches the critical temperature
TEW of the electroweak transition, B and L violating processes come into thermal
equilibrium [10].

The rate of these processes is related to the free energy of sphaleron-type field
configurations which carry topological charge. In the standard model they lead to an
effective interaction of all left-handed fermions [3] (cf. fig. 1),

OB+L =
∏

i

(qLiqLiqLilLi) , (2)

which violates baryon and lepton number by three units,

∆B = ∆L = 3 . (3)

3
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THE BARYON ASYMMETRY

‣The number we have to explain is

‣Entropy                is conserved, related to 
photon density:  

‣Measured using BBN (deuterium abundance) 
and  CMB anisotropies (temperature 
fluctuations)

Y∆B =
nB − nB̄

s
= (8.75± 0.23)× 10−11

s = g�(2π2/45)T 3

s = 7.04 nγ
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